o

8" Central and Eastern European @ 2012
stk

Software Engineering Conference ~ CEE-SECR

in Russia - CEE-SECR 2012 Software Engineering

November 1 - 2. Moscow Conference in Russia

Jsonya/dm: A Univocal JSON

Interpretation

Miloslav Sredkov

Faculty of Mathematics and
Informatics, Sofia University

This work was partially supported by the Bulgarian National Science Research Fund through contract 02-
102/20009.

Introduction (1)

JSON grows more and more popular:

® Intended to be “the intersection of all modern programming
languages”

® “The thing that everybody can agree on, so it's really easy to
pass data back and forth” [1]
Still defined only as syntax

®* Most developers assume semantics biased towards their
tools

® Potential interpretation clashes

e
Introduction (2)

Our idea:

® Interoperable interpretation should be designed based on a
large set of environments

Our contributions:

® Overview of the currently used JSON data models

® Analysis of the ambiguous features of JSON

®* The unambiguous data model Jsonya/dm

® Analysis of 63 JSON libraries for 10 programming languages

Il. EXISTING APPROACHES

e

JavaScript Interpretation

JSON is a subset of ECMAScript [2], so why shouldn't its
interpretation also be?

IEEE 754 [3] 64-bit floats:

® Loss of precision when converting to and from text
®* What about +Inf or NaN?

®* Some environments may lack 64-bit floats
Are object members ordered?

®* ECMAScript Standard: No
® Most browsers: Yes

e
The XML Metamodel

Some authors consider JSON as “An alternative physical
model for XML metamodels” [4]

® Tools converting between XML and JSON are present
® XSLT, XQuery, XForms, etc. can be used

However,
®* XML has multiple different metamodels
® JSON and XML are too different — conversion is not trivial

® Inherited XML problems prevent JSON from being “The Fat-
Free Alternative to XML”

e

The YAML Metamodel

YAML is stated as a “natural superset of JISON” [5]

®* Many YAML technologies can be applied to JSON

® Its specification (unlike XML's) explicitly defines an
information model

However,

®* YAML is less popular and less tools are available

® Its information model is loosely defined, e.g: “The supported
range and accuracy depends on the implementation, though
32 bit IEEE floats should be safe.” [5:74]

e
Other Popular Metamodels

Work at the syntax level only
® Pros: developers can pick the most suitable interpretation
® Cons: less convenient, less interoperable

Map to the types of the host programming language

® Pros: better performance, more convenient

® Cons: less interoperable, e.g. not distinguishing empty
arrays from null

A set of custom data types

® Pros: flexibility

® Cons: likely to be influenced by the host language

l1l. ANALYSIS

Example

"name": "Evgeni V. Plushenko",
"month": 11,

"birth date": {"year": 1982,

Could | have written day,
month, year instead?

0,

"day": |35 Could | have written 3.0 instead?
"best scores": [2061.23, 91.3
"status": {

"verified": true,

"locked": false,

"external record": nul 1<

<%

Is the trailing zero important?

Could | have omitted it?

e

Objects

Some ambiguities:

® Ordered fields? (RFC 4627: No, Many libraries: Yes)

® Unique names? (RFC 4627: Probably, Most libraries: Yes)

®* What characters are allowed in field names and how are
they compared?

Common representations:

® Plain lists / arrays: O(N), ordered

® Sorted sequences (incl. balanced trees): O(log N), unordered

® Hash tables: O(1), unordered

® Linked hash tables: O(1), ordered

Numbers

Some ambiguities:

*-0==0?

®130==130.07
©130.0==130.00?130==13e1?

® Can we accurately define 0.123456789012345678901°
Different tools answer these questions differently
The intersection principle cannot be applied here

The essential information must be defined explicitly

e

Strings and Other Ambiguities

"K" =="\u004b"?

Can strings contain nil characters?

Do strings have a maximal length?
123=="123"7

Are false,null, O0,"", {1}, [] distinct?

e
Design Considerations

Explicitness: We must unambiguously define which JSON
details are essential and which are not

Determinism: The same JSON text should denote the
exact same information regardless of the environment

* Any loss of information/precision must be controllable

Detail concealment: The metamodel structure should not
expose any inessential information

Minimalism. Only information which is useful to a wide
enough set of applications should be included

V. JSSONYA/DM

e
The Metamodel

Each element has a (distinguishable) kind: string, decimal,
object, array, true, false, or null

Strings: finite sequences of code points U+0000-U+D7FF
and U+EOO00-U+10FFFF

Decimals: rational numbers with denominators 2'5"

Objects: unordered associative arrays whose keys are
distinct strings

Arrays: finite sequences of zero or more elements

True, false, and null: no additional information except
their kinds

e

Domain Enumerability

To formally define the information set, a bijective
function encode : N - the set of all elements

Two JSON texts represent the same element iff they
correspond to the same number

The mapping is based on the Cantor's pair function [6]

Can also be used to generate test data and for other
applications

e
Implementatability (1)

The information model is designed to follow the core
JSON ideas

For strings and numbers the intersection principle could
not be applied

®* The model targets to facilitate determinism instead

For some environments this model may be too
sophisticated

® Particular limitations can be negotiated explicitly
® Relayed information must not be inadvertently distorted

e

Implementatability (2)

The essential defines object model selectors, e.g.:

public 1nterface Element {
String kind () ;
Set<String> keys{();
FElement field(String name) ;
Element i1tem(int index);
int size();
String asString() ;
BigDecimal asDecimal () ;

Limitations

The following questions are not answered:
®* How should the unorderness of the keys () be achieved?
®* What if a non-existing field or item is requested?

®* How to conceal details available in the used types?
E.g.: for Java's BigDecimal 12.0 and 12.00 are different

®* How can the “inessential” information be handled in cases
when such is needed?

Already established technologies may be incompatible
with the introduced metamodel

V. EVALUATION

e
Methodology

Select the 10 most discussed programming languages
according to LangPop.com

For each of them pick all libraries listed at json.org
|dentify the data model of each library and record its
properties, including:

® Are objects ordered or unordered?

® What parts of the string or number representation is
exposed?

®* What is the supported set of numbers?

® Are false, null, empty objects and empty arrays
distinguishable?

e

Results

63 libraries analysed (C++: 6, C: 9, Java: 18, Python: 4,
Haskell: 2, JavaScript: 2, Ruby: 3, C#: 10, PHP: 6, Lisp: 3)
®* More than 11 different integer ranges

* Almost as much ways to treat non-integers

* Different handling of strings, empty lists/arrays, nulls

®* Many libraries behaved differently based on platform and
runtime version

®* More than half of the libraries treated objects as ordered

What data-interchange are we talking about then?

Interpretation of Results

Number handling discrepancy justifies the radical
approach of Jsonya/dm.

Some environments do not fully support Unicode, but
there is no suitable substitute

Unordered objects are more interoperable

On the negative side:
®* Most libraries could not handle arbitrarily large numbers,
® Decimal numbers may require additional effort

®* Most libraries used mutable object models, we do not
prescribe to efficiently design such

e

Threats to Validity

The accuracy of the evaluation may affected by:

* All libraries were considered equal, although they vary
significantly in features, quality and popularity

®* Some of the libraries may have not been analysed correctly,
e.g. used in an incorrect way

®* Some of the libraries may have already changed

/
Conclusion

We presented Jsonya/dm — an unambiguous data model
for JSON

Jsonya/dm is aligned with established tendencies and
attacks the common causes of discrepancy

The interfaces of the adhering object models can be
simple

We look forward to integration with some of the already
developed JSON tools

Future work: We need to devise efficient representations
for the needs of the various environments

Thank Youl!

Questions?

References

[1] D. Crockford, “The JSON saga,” YUl Theater video, 2009,

[2] ECMA, ECMA-262: ECMAScript Language Specification. 5.1
edn., 2011

[3] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point
Arithmetic, 2008

[4] E. Wilde and R.J. Glushko, “Document design matters,”
Commun. ACM 51 (2008) 43-49

[5] O. Ben-Kiki, C. Evans and I. dot Net, YAML ain’t markup
language (YAML™) version 1.2, 3rd edition, patched at 2009-10-
01. http://yaml.org/spec/1.2/spec.pdf, 2009

[6] G. Cantor, “Ein Beitrag zur Mannigfaltigkeitslehre,” Journal
fur die reine und angewandte Mathematik 84, 1878, pp. 242—-

\ 258

