
8th Central and Eastern European
Software Engineering Conference
in Russia - CEE-SECR 2012
November 1 - 2, Moscow

Miloslav Sredkov

Jsonya/dm: A Univocal JSON
Interpretation

Faculty of Mathematics and
Informatics, Sofia University

This work was partially supported by the Bulgarian National Science Research Fund through contract 02-
102/2009.

Introduction (1)

 JSON grows more and more popular:
 Intended to be “the intersection of all modern programming

languages”
 “The thing that everybody can agree on, so it's really easy to

pass data back and forth” [1]
 Still defined only as syntax

 Most developers assume semantics biased towards their
tools

 Potential interpretation clashes

Introduction (2)

 Our idea:
 Interoperable interpretation should be designed based on a

large set of environments
 Our contributions:

 Overview of the currently used JSON data models
 Analysis of the ambiguous features of JSON
 The unambiguous data model Jsonya/dm
 Analysis of 63 JSON libraries for 10 programming languages

II. EXISTING APPROACHES

JavaScript Interpretation

 JSON is a subset of ECMAScript [2], so why shouldn't its
interpretation also be?

 IEEE 754 [3] 64-bit floats:
 Loss of precision when converting to and from text
 What about +Inf or NaN?
 Some environments may lack 64-bit floats

 Are object members ordered?
 ECMAScript Standard: No
 Most browsers: Yes

The XML Metamodel

 Some authors consider JSON as “An alternative physical
model for XML metamodels” [4]
 Tools converting between XML and JSON are present
 XSLT, XQuery, XForms, etc. can be used

 However,
 XML has multiple different metamodels
 JSON and XML are too different — conversion is not trivial
 Inherited XML problems prevent JSON from being “The Fat-

Free Alternative to XML”

The YAML Metamodel

 YAML is stated as a “natural superset of JSON” [5]
 Many YAML technologies can be applied to JSON
 Its specification (unlike XML's) explicitly defines an

information model
 However,

 YAML is less popular and less tools are available
 Its information model is loosely defined, e.g: “The supported

range and accuracy depends on the implementation, though
32 bit IEEE floats should be safe.” [5:74]

Other Popular Metamodels

 Work at the syntax level only
 Pros: developers can pick the most suitable interpretation
 Cons: less convenient, less interoperable

 Map to the types of the host programming language
 Pros: better performance, more convenient
 Cons: less interoperable, e.g. not distinguishing empty

arrays from null
 A set of custom data types

 Pros: flexibility
 Cons: likely to be influenced by the host language

III. ANALYSIS

Example

{

 "name": "Evgeni V. Plushenko",

 "birth_date": {"year": 1982, "month": 11,

 "day": 3},

 "best_scores": [261.23, 91.30, 176.52],

 "status": {

 "verified": true,

 "locked": false,

 "external_record": null

}

}

Could I have written day,
month, year instead?

Could I have written 3.0 instead?

Could I have omitted it?

Is the trailing zero important?

Objects

 Some ambiguities:
 Ordered fields? (RFC 4627: No, Many libraries: Yes)
 Unique names? (RFC 4627: Probably, Most libraries: Yes)
 What characters are allowed in field names and how are

they compared?
 Common representations:

 Plain lists / arrays: O(N), ordered
 Sorted sequences (incl. balanced trees): O(log N), unordered
 Hash tables: O(1), unordered
 Linked hash tables: O(1), ordered

Numbers

 Some ambiguities:
 -0 == 0?
 130 == 130.0?
 130.0 == 130.00? 130 == 13e1?
 Can we accurately define 0.123456789012345678901?

 Different tools answer these questions differently
 The intersection principle cannot be applied here
 The essential information must be defined explicitly

Strings and Other Ambiguities

 "K" == "\u004b"?
 Can strings contain nil characters?
 Do strings have a maximal length?
 123 == "123"?
 Are false, null, 0, "", {}, [] distinct?

Design Considerations

 Explicitness: We must unambiguously define which JSON
details are essential and which are not

 Determinism: The same JSON text should denote the
exact same information regardless of the environment
 Any loss of information/precision must be controllable

 Detail concealment: The metamodel structure should not
expose any inessential information

 Minimalism. Only information which is useful to a wide
enough set of applications should be included

IV. JSONYA/DM

The Metamodel

 Each element has a (distinguishable) kind: string, decimal,
object, array, true, false, or null

 Strings: finite sequences of code points U+0000–U+D7FF
and U+E000–U+10FFFF

 Decimals: rational numbers with denominators 2N5M

 Objects: unordered associative arrays whose keys are
distinct strings

 Arrays: finite sequences of zero or more elements
 True, false, and null: no additional information except

their kinds

Domain Enumerability

 To formally define the information set, a bijective
function encode : N → the set of all elements

 Two JSON texts represent the same element iff they
correspond to the same number

 The mapping is based on the Cantor's pair function [6]
 Can also be used to generate test data and for other

applications

Implementatability (1)

 The information model is designed to follow the core
JSON ideas

 For strings and numbers the intersection principle could
not be applied
 The model targets to facilitate determinism instead

 For some environments this model may be too
sophisticated
 Particular limitations can be negotiated explicitly
 Relayed information must not be inadvertently distorted

Implementatability (2)

The essential defines object model selectors, e.g.:
public interface Element {

String kind();
Set<String> keys();
Element field(String name);
Element item(int index);
int size();
String asString();
BigDecimal asDecimal();

}

Limitations

 The following questions are not answered:
 How should the unorderness of the keys() be achieved?
 What if a non-existing field or item is requested?
 How to conceal details available in the used types?

 E.g.: for Java's BigDecimal 12.0 and 12.00 are different
 How can the “inessential” information be handled in cases

when such is needed?
 Already established technologies may be incompatible

with the introduced metamodel

V. EVALUATION

Methodology

 Select the 10 most discussed programming languages
according to LangPop.com

 For each of them pick all libraries listed at json.org
 Identify the data model of each library and record its

properties, including:
 Are objects ordered or unordered?
 What parts of the string or number representation is

exposed?
 What is the supported set of numbers?
 Are false, null, empty objects and empty arrays

distinguishable?

Results

 63 libraries analysed (C++: 6, C: 9, Java: 18, Python: 4,
Haskell: 2, JavaScript: 2, Ruby: 3, C#: 10, PHP: 6, Lisp: 3)
 More than 11 different integer ranges
 Almost as much ways to treat non-integers
 Different handling of strings, empty lists/arrays, nulls
 Many libraries behaved differently based on platform and

runtime version
 More than half of the libraries treated objects as ordered

 What data-interchange are we talking about then?

Interpretation of Results

 Number handling discrepancy justifies the radical
approach of Jsonya/dm.

 Some environments do not fully support Unicode, but
there is no suitable substitute

 Unordered objects are more interoperable
 On the negative side:

 Most libraries could not handle arbitrarily large numbers,
 Decimal numbers may require additional effort
 Most libraries used mutable object models, we do not

prescribe to efficiently design such

Threats to Validity

 The accuracy of the evaluation may affected by:
 All libraries were considered equal, although they vary

significantly in features, quality and popularity
 Some of the libraries may have not been analysed correctly,

e.g. used in an incorrect way
 Some of the libraries may have already changed

Conclusion

 We presented Jsonya/dm — an unambiguous data model
for JSON

 Jsonya/dm is aligned with established tendencies and
attacks the common causes of discrepancy

 The interfaces of the adhering object models can be
simple

 We look forward to integration with some of the already
developed JSON tools

 Future work: We need to devise efficient representations
for the needs of the various environments

Thank You!

Questions?

References

[1] D. Crockford, “The JSON saga,” YUI Theater video, 2009,

[2] ECMA, ECMA-262: ECMAScript Language Specification. 5.1
edn., 2011

[3] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point
Arithmetic, 2008

[4] E. Wilde and R.J. Glushko, “Document design matters,”
Commun. ACM 51 (2008) 43–49

[5] O. Ben-Kiki, C. Evans and I. döt Net, YAML ain’t markup
language (YAML™) version 1.2, 3rd edition, patched at 2009-10-
01. http://yaml.org/spec/1.2/spec.pdf, 2009

[6] G. Cantor, “Ein Beitrag zur Mannigfaltigkeitslehre,” Journal
für die reine und angewandte Mathematik 84, 1878, pp. 242–
258

