
8th Central and Eastern European
Software Engineering Conference
in Russia - CEE-SECR 2012
November 1 - 2, Moscow

Stanislav Bratanov

Power Battle: Windows 7 vs. Windows 8

Intel Corporation

Agenda

 Motivation for power analysis tools

 Methodology of application-centric analysis

 Compute-intensive application case study

 Results and conclusions

2

Our Goal

 Give SW developers a power analysis tool to:

 Uncover various factors affecting power consumption

 Map power consumption back to SW categories we can
easily control/change/improve

 Adapt SW accordingly

 Choose wisely between various OS and HW

 Make OS/HW manufacturers feel the (increasing) pressure
from SW developers for power efficiency

3

Optimization through Adaptation

HW active power and
thermal management

capabilities
(frequency, voltage, turbo-

boosting)

HW idle power
management capabilities

(power-efficient sleep
states)

OS active power
management policies

(frequency)

OS idle power
management policies
(use of power states,

various thresholds and
heuristics)

SW can adapt by changing
its thread synchronization
scheme and by proactively

disabling certain OS policies

OS scheduler
(determines the layout of

active/idle periods)

4

CPU Power Management Capabilities

 Active power consumption

 Various clock frequency management techniques:
 SpeedStep®, thermal, clock modulation, turbo boost, platform specific

frequency management

 Idle power consumption

 Low power sleep states:
 C1 (HLT), C2, C3 (L1 off), C4, C5, C6, C7 (LLC off)

C0

C1

C3 C3

C6 Earlier CPUs had to always go
back to C0 to switch a C-state

Going to and back from sleep

isn’t free, so CPU should stay in

certain C-states longer than

some threshold to save energy

5

Inside Intel VTune Amplifier XE 2013

JNZ

20

JA

100

20

20

RET

20

thread 0 thread 0wait time

sampling intervals

thread 1 thread 1inactive time

sampling intervals

active time

 Quantum end

 Sync

Timestamp

Wall-clock reference

Event counter values

 Stack

Timestamp

Wall-clock reference

Event counter values

Timestamp

Event counter values

 processElement() à getNextItem() à doTheJob()Stacks

Branches

Switched out because of:

WaitForSingleObject(Handle);

“A0 [rax + rbx*2 + 85]”, “[A0 + rcx*8]”Registers and Memory

IPIIPI

Was system idle?

Did we wake it up?

Was HW in a sleep state?

(C-states measurable via

special registers)

How many Joules per sample/function/call stack?

(measurable via special registers)

6

Can Learn a Lot about an App

Almost every wait
brought the system to
idle and then caused a

wakeup

HW
events

Context
switches

Wakeups
from idle

Consumed
energy

(uJoules)

Number of
contended

waits

Hotspots
Idle
time

Cx state
residency

Wait and
inactive

times

Call stack

System idled for
~25% of wait time

System spent ~10% of
idleness in C6 state

7

The Setup

 Hardware:

 Ultrabook ASUS UX31

 Processor: Intel® Core™i5 (architecture code name Sandy Bridge)

 Operating Systems:

 Microsoft® Windows™ 7

 Microsoft® Windows™ 8

 Workload:

 SPEC OMP 2001 (equake)

 Toolset:

 Intel® VTune™ Amplifier XE 2013

 Measurement:

 Performance, Parallelism, and Power profile measured when the system was
plugged in to a wall power outlet and when unplugged.

Win7
(plugged)

high
performance

Win8
(plugged)

high
performance

Win7
(unplugged)

power saving

Win8
(unplugged)

power saving

8

The Code

 The workload is a set of “omp parallel for” loops:

#pragma omp parallel

{

 ...

 #pragma omp for

 for (i = 0; i < nodes; i++)

 {

 ...

 }

 #pragma omp for

 for (...){...}

}

#pragma omp parallel for

for (...){...}

Parallel compute-
intensive work

Implicit barriers

9

Plugged

 Windows 7:

 Windows 8:

Comparable performance,
synchronization and wakeup
rates, and wait and idle times

Low utilization of idle time in C-states
(Win7: ~2.5% and Win8: 0.4%)!

Huge (185x) preemption rate on Win7 –
scheduler impact may be an issue!

10

Unplugged

 Windows 7:

 Windows 8:

Win7 lowers CPU frequency (>2X) and runs slower

Wait, inactive, and idle times
increase proportionally to

execution time

Preemptions increase
with execution time

Wakeups depend more on thread
interaction logic and do not change

Both systems now go deeper to C7, but
Win7 residency soars (up to 25%) with

the increase of idle time

11

Active Power and Performance Summary

 Synchronization and Scheduler Impact:

 Active energy:

0

50000

100000

150000

200000

250000

Preemption Context
Switches

Synchronization Context
Switches

Win7, plugged

Win7, unplugged

Win8, plugged

Win8, unplugged

The difference in
thread contention is

comparatively small…

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

Energy Core Energy GFX Energy Pack

Win7, plugged

Win7, unplugged

Win8, plugged

Win8, unplugged

Lowering CPU frequency is inefficient as
it decreases the energy of cores, but

leaves the total energy about the same.

…But the scheduler
impact of Win8 is

invisible!

Scheduler impact + wrong
frequency policy makes Win7 lose in

both performance and power
consumption.

12

Idle Power and Performance Summary

 Idleness Efficiency:

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

C3
Residency

C6
Residency

C7
Residency

Idle Time Idle
Wakeup

Win7, plugged

Win7, unplugged

Win8, plugged

Win8, unplugged

In case of increased idle time of Win7
(unplugged), C-residency improves to 25%

Both systems spend only tiny fractions of idle
time in power-efficient states – our app with

short barriers (waits) is not efficient

That suggests there must be a
threshold after which C-state
residency grows rapidly. Our
further experiments identified

it to be ~100ms

13

Conclusion

 Windows 7 sliced and diced our app with preemptions
and lowered the CPU frequency to complete the torture

 Do not lower CPU freq. for
compute-intensive apps

 Win8 scheduler is less
intrusive

 Short sleeps are inefficient as CPU
hardly goes to lower-power states

 Eliminate sleeps in compute-apps, or

 Sleep >100ms to let the system spend
90+% of idleness in low-power states

14

Backup

 Raw Data

 Comparison Summaries

15

Raw Data (Win7, plugged)

16

Total time

C3 and C6 power state residencies, no C7,
occupy only a minor fraction of Idle Time

CLK.THREAD > CLK.REF, running at frequency boost

Too many wakeups, hence average idle time is
under 100k clocks

Mind the number of preemptions

Energy (u-Joules) spent on active work

Raw Data (Win7, plugged)

17

Never goes to C7

In low power states for
sync-functions only

Almost every synchronization context switch
causes a wakeup

Computation
hotspots

Synchronization
(wait-spots)

Raw Data (Win7, unplugged)

18

The workload slowed down 3 times

The processor goes to C7, skipping C6

CPU frequency dropped ~2.12x

But only 5% of total CPU power saving

Gained ~1.8x core power saving

Preemptions and wait time increased
proportionally to the total execution time

Raw Data (Win7, unplugged)

19

Now skips C6

All times (total, wait and idle) increased, but the
number of wakeups remained about the same Now (as the average idle time

increased) the system spends
up to 25% of the idleness in C7

Raw Data (Win8, plugged)

20

The workload runs faster under Win8

C6 residency are 3 times shorter

CPU frequency boost ~1.4x

Consumes less energy than under Win7

About the same wakeup rate

150x fewer preemptions!

Raw Data (Win8, plugged)

21

Lower preemption and wakeup rate on
computational hotspots

Worse C-state residency at a similar wakeup rate
and average idle time as in Win7

Raw Data (Win8, unplugged)

22

Less than 10% performance loss

Goes down to C7 but stays for a minor fraction of idle time

Still at frequency boost ~1.2x

Saving ~8% of core and ~4% of total CPU energy
(compared with the plugged state)

Similar wakeup rate

Preemptions increased proportionally to the total time

Raw Data (Win8, unplugged)

23

C3 residencies are higher than C7, and still much
worse than Win7

Active Power Analysis

24

Plugged Unplugged

1. Both systems use CPU frequency
boost.

2. Win8 is 8% faster than Win7.
3. Win7 has 150x higher preemption

context switch rate.
4. Win8 consumes 30% less energy.

1. Win8 is 2.92x faster than Win7.
2. Win8 consumes 28% less energy.
3. Win8 preemption context switch rate

is 370x lower.
4. Win7 decreases CPU frequency 2.12x
5. Win8 runs at 1.2x frequency boost
6. Win7 gains 58% of core energy

savings vs. Win8, but loses in the
total CPU energy savings.

Win8 scheduler looks more efficient
and seems to be the reason for better

performance and power savings.

Idle Power Analysis

25

Plugged Unplugged

1. Both systems do not go deeper than
C6.

2. Both go to C-states for
synchronization functions only (when
ready thread queues are empty).

3. Win7 stays in C-states (C3/C6) up to 5
times longer.

1. Both systems go down to C7 skipping
C6.

2. Win7 spends up to 25% of idle time
in C7.

3. Win8 spends well under 1% in C7.
4. The rate of idle wakeups is

approximately the same.

Comments on C-state residencies (measured for inactive workloads):

a) both systems tend to spend the idle time almost entirely in C-states: C6 when plugged to the

power source, C7 when running on battery;
b) Win8 tends to spend more time in C3;
c) Win7 tends to utilize more idle time and stays more than 90% of idleness in low-power states;
d) high idleness utilization starts when the average idle time before a wakeup comprises hundreds

of millions of clock ticks.

Battery Life Analysis

26

 Conventional Battery Life = time-of-1%-discharge * 100

 Measured in the same charge range (90%-80%)

 Win8: 100 minutes

 Win7: 250 minutes

 Win7 lasts 2.5x longer, but remember that
the workload runs almost 3x slower!

Comparison Summary

27

 Idleness Efficiency:

 Synchronization and

Scheduler Impact:

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

C3
Residency

C6
Residency

C7
Residency

Idle Time Idle
Wakeup

Win7, plugged

Win7, unplugged

Win8, plugged

Win8, unplugged

0

50000

100000

150000

200000

250000

Preemption Context
Switches

Synchronization Context
Switches

Win7, plugged

Win7, unplugged

Win8, plugged

Win8, unplugged

The difference in the
synchronization profile is

comparatively small, but the
scheduler impact of Win8 is

invisible!

In case of increased idle time of Win7
(unplugged), C-residency improves to 25%

Comparison Summary

28

 Active Work and Threading:

 Active Energy:

0
5E+10
1E+11

1.5E+11
2E+11

2.5E+11
3E+11

3.5E+11
4E+11

Win7, plugged

Win7, unplugged

Win8, plugged

Win8, unplugged

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

Energy Core Energy GFX Energy Pack

Win7, plugged

Win7, unplugged

Win8, plugged

Win8, unplugged

Win7 (unplugged) 2.12x frequency drop
increases the absolute execution, wait, and

idle times proportionally.

The CPU frequency drop decreases the
energy of cores, but leaves the total

energy about the same.

Comparison Summary

29

 Win7 is currently more efficient at sleeping than Win8

 Win8 is best for active workloads

Suppose we encode video and it takes us 1 hour on Win8 and completely drains the battery.
The same task will deplete the battery in 2h 30 min on Win7, but we’ll still need 30 minutes more!

Win7 may spend up to 100 times longer in C7
state while idle!

Conclusions and Suggestions

30

 Lowering CPU frequency is good for cooling efficiency

 The workload consumes about the same energy but runs longer (<Watts)

 Lowering CPU frequency is bad for active workloads which run to

completion

 More slowdown than power savings

 Lowering CPU frequency may be good for periodic workloads that

consume less than 50% of CPU

 Need SW assistance or a special scheduler to detect that

 Going to sleep is always good

 Need to measure the actual benefits (in Joules)

 Lower OS scheduler intrusion is key to higher performance and

power savings

